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CHARACTERIZATIONS OF SOME CLASSES
OF L'-PREDUALS BY THE
ALFSEN-EFFROS STRUCTURE TOPOLOGY

BY
T. S. S. R. K. RAO

ABSTRACT

Using the Alfsen-Effros structure topology on the extreme boundary of the
dual unit ball of a complex Banach space, we give characterizations of
L'-preduals (i.e., Banach spaces whose duals are isometrically isomorphic to
L'(p) for a non-negative measure u) and some of its subclasses viz. G-spaces,
C,-spaces and co(I') spaces.

Introduction

A closed subspace J of a complex Banach space X is called an L-1deal if there
is a projection P from X onto J such that ||x || =||Px ||+ ||x — Px|| for all x in X.
A closed subspace M C X is called an M-ideal if M*={f € X*: f(M)=0}is an
L-ideal in X*. Let E denote the extreme points of the closed unit ball of X*, A
set D C E is said to be structurally closed if there exists a w*-closed L-ideal N
such that N N E = D. The sets D form the closed sets of a topology on E called
the structure topology. The structure topology was introduced by Alfsen and
Effros in [2]. We make use of properties of the structure topology and related
results of M-ideal theory from [2] without explicitly mentioning them.

In this paper we study L'-preduals (i.e., Banach spaces X such that X* =
L'(w), for some non-negative measure ) and some subclasses of L'-preduals
using the structure topology. Most of our results directly depend on the results
obtained in [8].

In Section 1, we develop the complex analogues of some of the results in [5].
Details of proofs are given only in those instances when they differ significantly
from those in [5]. In Section 2, we characterize real, L '-preduals as those Banach
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spaces X for which {f € E :|f(x)] = 1} is a structurally closed set for each x € X.
We then formulate and prove the corresponding result for complex Banach
spaces.

For the definitions of G-spaces, C,, Cs spaces, see [15]. We freely use the
characterizations of these spaces obtained in that paper. In Section 3 we
characterize complex G -spaces as those Banach spaces X for which |x |[: E =R,
defined by | x |(f) = |f(x)], is structurally upper semi-continuous for each x € X.
We attempt to solve a problem of Uttersrud [18], of characterizing G -spaces as
those Banach spaces X for which the intersection of M -ideals is an M-ideal and
line {f} is an L -ideal for all f € E. We show that if {f € E: line {f} is an L-ideal}
is w*-sequentially dense in the w*-closure of E, then line {f} is an L -ideal for all f
in the w*-closure of E. This enables us to give simple and transparent proofs of
results which are more general than those obtained by N. Roy [17] and A. Gleit
in [10], in this context.

C,-spaces are characterized in Section 4 as those Banach spaces X for which
the structure topology agrees with the relative w*-topology on T-invariant
subsets of E.

We make free use of concepts of convexity theory from [1}.

NotaTions. For a complex Banach space X, let X; denote the closed unit
ball, S ={x € X,:|x[=1} and S*={f € X :||f||=1}. Let Z denote the w*-
closure of E. For any A C X*, let c(A) denote the w*-closed, convex hull of A.
Let C denote the complex plane and T the unit circle in C.

For a compact convex set K (always considered in a locally convex Hausdorft
topological vector space) let E(K) denote the extreme boundary of K.
For a probability measure p on K, let y{(u) denote the resultant of u. Let
A (K)(Ac(K)) denote the space of real-valued (complex-valued) affine continu-
ous functions on K, equipped with the supremum norm.

For a compact Hausdorff space Y let Cc(Y) denote the space of complex-
valued continuous functions on Y. For a probability measure u on Y, let Supp n
denote the topological support of u. For any y € Y, let 8(y) denote the Dirac
measure at y.

For p € X1, let N, denote the smallest w*-closed L-ideal containing p. All
closures, unless otherwise mentioned, are taken in the w*-topology. Let 1;, >

denote convergence in the w* and structure topologies respectively. For all other
unexplained notations and terminology, see [2], [5], [8] and [15].

We will be using several times the following result from general Banach space
theory (see [4], V. 5.9).
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Let X be a Banach space and K C X * be a w*-closed convex set. Then line K
(i.e., the linear span of K) is norm closed iff it is w*-closed.

1. T-faces and T-dilated sets

DEerFINITION.  Let X be a complex Banach space. For any p,q € X, write p <gq
if [gl=lq-pl+lpl-

The operation < was introduced in [2] and is a partial ordering on X.

A set H C X is said to be hereditary if p € H, ¢ <p implies ¢ € H.

DEFINITION. A w*-closed, T-invariant convex set H C X ¥ is called a T-face if
() Vp€EH, p#0, p/lpll€ H; (2) H is hereditary.

Let H, denote the smallest w*-closed T-face containing p.

REMARK 1. If pEE then H,={Ap:|A|=1}. For any 0#p€ X},
E(H,)CE and H, = H,, for 0<A <1.

DEFINITION. We say that a w*-closed set D C X% is T-dilated if for all p € D,
E(H,)CD.

For the rest of this section we assume that X is an L'-predual and K = X%.

DeFINITION.  Following the notation of [8], for any p € K, define w, =
R (hom w), where u is a maximal measure with y () = p. Then by [6}], w, is well
defined and y(w,)=p.

REMARK 2. It is clear from the results in section 5 of [5] that for 0 # p € K,
w, =||p||- wp/llp| and if ||p]|=1 then w, =p and Supp w, C H,. Also a w*-
closed, T-invariant set H is a T-face iff Vp € H, p#0, Supp w, C H.

LemMA 1.1. For any T-face H of K, N =line H is a w*-closed L-ideal.

Proor. We first claim that N, = H and N is w*-closed.

Let 0#p €Ny, then p =2, rq;, ¢ € H, r#0 Vi. So p = A Z/_, Aitiq: where
A =34 n|, A =|r|/A and & =r/|r| Vi. Since ¢ =2, Atq; €H, q/|q|€EH
and hence p=A|qllq/llqll is in H. Therefore H =N, and hence by the
Krein~-Smulian theorem, we get that N is w*-closed.

That N is an L-ideal follows by an argument similar to the one used in the
proof of the latter half of proposition 2.1 in (8].

Lemma 1.2. ¢(D) is a T-face for any w *-closed, T-invariant set D C K with
the property that ¥p € D, Supp w, C c(D).
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ProOF. Let 0#p € c(D) and let u be a probability measure on D with
v(n)=p and let » be a maximal measure on K dominating x in the Choquet
ordermg Then by theorem 2.10f[5],3 nets of measures {u,} and {;} such that
i — i, V,—>V wi =L cis(pl), vy =3/ ciA] for all j, where 0=ci=1 Vj,i,
SiLici=1Vj and p/€ D Vi and j, A!is a maximal measure with y(A})=p! Vj
and i

By hypothesis, Supp wpiC c(D), i.e., Supp R(homA})C c(D) and hence
hom A/ has its support in ¢ (D), as hom(R (hom A %)) = hom(hom A}) = hom A{. So
hom v; has its support in ¢ (D). Since ‘hom’ is 2 w*-continuous map, we get that
hom v has its support in ¢(D). Therefore, Supp w, = Supp R(hom »)C ¢(D).
Now the proof is complete in view of Remark 2.

CorOLLARY 1.3. For any dilated set D, c(D) is a T-face and D NE is a
structurally closed set.

2. L'-preduals

ProposITION 2.1. Let X be a complex Banach space and an L'-predual. If
x €S, then {f EE :|f(x)| =1} is a structurally closed set.

Proor. Let D ={f€Z:|f(x)|=1}.

Let p€D NS* then w, = and since {f EXT:f(x)=1} is a w*-closed
face, it is easy to see that Supp u C ¢(D). Now it foilows from the results of
the previous section that N =linec(D) is a w*-closed L-ideal and NN E =

{fEE:|f(x)]=1}

ReMARK. The above proposition was proved in [5], when X is a real
L'-predual. However, the proof given there contains an error.

THEOREM 2.2. Let X be a real Banach space such that for all x € S,
{f € E :|f(x)| =1} is a structurally closed set, then X is an L'-predual.

PrROOF. We use arguments similar to the ones used in proving theorem 3.3 of
(8].

Letxo€E S andlet F={f € X% :f(xo)=1}. Since {f EE :|f(x0)|=1}=NNE,
for some w*-closed L-ideal N, it is easy to see that N =line F and N, =
c(FU - F).

We claim that line F is an L-space.

Let J ="*(line F)={x € X :f(x)=0 Vf € F} and define ®: X IJ—-)A(F) by
S(x +N(f)=f(x), fEF, x € X. Since ®(xo+J)=1 (the constant function)
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using a standard argument in convexity theory it is easy to see that ® is an onto
isometry.

Let a €A(F), |al=1 and let G={f€F:a(f)=1}. Since ® is onto
Ix,€X3x+J|]=1 and ®(x;+J)=a. Since J is an M-ideal
A, €T 3lxi+xf = ||xs+ T|=1. Now if G ={f € X} :3f(xo+ x, + x,) = 1} then
it is easy to see that line G is a w*-closed L -ideal in line F and consequently G is
a split face of F. From [7], it then follows that F is a simplex and hence line F is
an L -space.

Let f,€ E and let 0 < ¢ < 1. Using the Bishop-Phelps theorem get g, € X1
such that ||fo— goll = ¢ and ||go]l = go(y), y € S. By what we have seen above, if
G={f€ X¥:f(y)=1} then line G is a w*-closed L-ideal and g, € line G. If P
denotes the L -projection from X* onto line G, then since |(I — P)(fo— go)l|< €
and P(fs) =0 or fo, we get that P(f,) = fo. Therefore fo € line G and hence is an
extreme point of the unit ball of the dual L -space line G. Hence by theorem 5.8
of [13], line {fo} is an L-ideal in line G and consequently in X*.

If fo€S* and P(f,) =0 or f, for all L-projections P, then we get go and G as
above and observe that g, € line G and apply theorem 5.8 of [13] to conclude
that fo € E.

Applying theorem 5.8 of [13] once again we get that X is an L'-predual.

Remark. The hypotheses of the above theorem is equivalent to saying that
line F. is an L-ideal and (lineF,),=c(F, U —F,) Vx €S, where F, =
{fe Xt f(x)=1}

An example was mentioned in section 4 of 8] to the effect that the above
result is not true when X is a complex Banach space. We give below a partial
complex analogue. First we recall the definition of an M-set from [8].

DerNITION.  Let X C Ce(Y) be a closed subspace separating points of Y. A
closed set D C Y, of the form D = e '(TF), where F is a w*-closed face of X7}
and e : Y — X7 is the evaluation map, is called an M-set if for any boundary
measure g on Y (i.e., | |eoe”" is a maximal measure on Xi) and p €A ", we
have u lD EA"

THEOREM 2.3. Let X C Cc(Y) be a closed subspace, separating points of Y.
The following are equivalent.

(1) For all fo€S, {a EE:|a(fo)|=1} is structurally closed and if F=
{a € X% :a(fo) =1} then F is split in c(F U —iF).

(2) For all f,€S, D={y€Y:|f(y)|=1} is an M-set and if B=
{fog : 8 € X} then B ID is a closed self-adjoint subspace of Cc(D) (fo stands for
the complex conjugate of fo).
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(3) X is an L'-predual.

ProoF. We shall prove that (3) > (2) = (1) = (3).

(3) > (2): We freely use the notations introduced in the proof of theorem 3.3
of [8].

Let F={a € X% :a(f,) = 1}. Since D = e '(TF), it follows from the proof of
(1) = (2) of theorem 3.3 in [8] that D is an M-set.

It follows from the results in section 4 of [15] that the map ®: X |J—-> Ac(F),
defined in the canonical way (J = “(line F)), is an onto isometry. Let f,g € X
be such that ®(f +J)=d(g +J). For any y €D, if e(y)=1t7, T €F and
fET then we have fo(y)=t and fo(y)g(y) =D +I)T)=D(Ff +I)(T)=
fo(y)m. There fog is the conjugate of fof on D. Hence B ID is seif-adjoint.

It is trivial to verify that B |D is isometrically isomorphic to X 'J and hence
B |D is closed.

(2) > (1): If we define Q : X*->X*by Q(p)(f)= fofdu for fEX, p € X*
and p a boundary measure on Y representing p with [[p||=|lx ||, then the same
reasoning as in the proof of theorem 3.3 of [8] yields that line F is a w*-closed
L-ideal and (line F), = ¢(TD). Therefore {a € E :|a(fo)| =1} is structurally
closed. Using the self-adjointness of B ID, it is easy to see that
(I>:X|J—> Ac(F) has self-adjoint range, where ®, F and J are defined as
before. Since the range of ® contains the constant function 1, it must coincide
with Ac(F). Hence F is split in ¢(F U — iF) (see [11], chapter 7, lemma 12).

(1) => (3): Letfb€S, F={a € X7 :a(fy)=1}. Using the hypotheses it is easy
to see that line F is a w*-closed L -ideal and (line F), = ¢(TF). Hence the natural
map ®: X | J — Ac(F) (where J = *(line F)) is an isometry and the range of ®
contains the constant function 1. We claim that & is onto. It is enough to show
that the range to @ is a self-adjoint subspace of A¢(F). But this again follows
from lemma 12, chapter 7 of [11], since F is split in ¢ (F U — iF). Hence as in the
proof of Theorem 2.1, we get that line F is a dual L-space. Now an argument
similar to the one given in the latter half of the proof of Theorem 2.1 completes
the proof.

3. G-spaces

THEOREM 3.1. Let X be a complex Banach space. Then X is a G-space iff
Vx €EX,|x|: E—R, defined by |x|(f) = |f(x)| Vf € E, is upper semi-continuous
(u.s.c.) in the structure topology.

PROOF. Suppose |x | is structurally u.s.c. Vx € X. Let 0 # fo€ Z — E and let
{f} be any net in E and f,— fo.
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Fix p,€ N;,N E and let 0 # x € X, ¢ >0 and | po(x)| < ¢. Then by hypothesis
{f EE :|f(x)| < c} is a structurally open set containing p,. Since by lemma 3.8 of
(2, part 1I], f,=>p,, there is a jo such that j=j, implies |fi(x)|<c. As
fi(x)— f(x), it follows that |f(x)|= c. Hence line{po} = line{fo} and this is true
for all p, € N;,N E. Therefore N, = line{fs} and hence line{fo} is an L-ideal.

Now let D C E be any w*-compact, T-invariant set. Let {f;} be any net in D
and f, = f, f € E. By replacing {f;} by a subnet if necessary, we may assume that
fi 5 go and go € D. Using an argument similar to the one above we can see that
| go(x)| = |fo(x)] ¥x € X. Since ||fo]| =1 =] gol|, we get that fo = ago, « € T. Since
D is T-invariant, fo € D. Hence D is structurally closed.

Since Vf € Z, line {f} is an L-ideal, we have Z C [0, 1]E. Hence S*NZ = E.
Since $* is a G; in the relative w*-topology of X1, we get that E is a Borel set.
Also for any maximal measure pu on X%, u(S$*)=1 and u(Z)=1 imply
w(E)=1. Hence X% is a ‘standard’ compact convex set.

It now follows from the proof of theorem 2.2 in [8] that X is an L'-predual.
Therefore X is a G-space.

If X is a G-space, then it is not difficult to see that | x | is u.s.c. in the structure
topology (see [16]).

CoroLLARY 3.2. If X is a complex Banach space and the structure topology on
E is such that for any p,, p. € E, p\, p. linearly independent, there exist disjoint
structurally open sets separating p, and p,, then X is a G-space.

ProoF. LetO0O#x € X andc >0,let D ={f EE :|f(x)|=c}. If {f;} is any net
in D and f, = f, f € E, we may assume that f, —> g, g € Z. Since |f; (x)| = ¢ Vj, we
have g#0. Hence by lemma 3.8 of [2, part II] and the separation property
assumed in the hypothesis it follows that f = tg/||g||, ¢t € T. Hence

1
X)=rplgx)=c
[f(x)] "8"'g( )]
Therefore f € D.
Hence |x | is u.s.c. in the structure topology.

ReMARK. Corollary 3.2 was proved for real Banach spaces in [18] by a
different argument.

CoRrOLLARY 3.3. A compact convex set K is a Bauer simplex if and only if for
all a € A(K), |a|: E(K)—R is u.s.c. in the facial topology.

ProPOSITION 3.4. Let X be a complex Banach space. Consider the following
statements.
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(1) X is a G-space.
R VxEX, x#0 U, ={f €EE : f(x)#0} is open in the structure topology.
(3) Vf € E, line{f} is an L-ideal and the intersection of any family of M-ideals
in X is an M-ideal.
(4) For any D CE, line D is an L-ideal.
Then we have (1) > 2) © (3) & (4).

Proor. Follows easily from lemma 5 of [16] and remark 2 after the proof of
theorem 10 of [18].

CoROLLARY 3.5. Let X ={fE€Cc(Y): f(ya) = Aataf(2.); . ET, A, €[0,1]
and y,,z, €Y, a €3} (where 3 is an index set). Then for any D C Y,

My ={f€ X :f(D)=0}isan M-ideal in X.

Proor. Let e: Y — X7 denote the evaluation map. Using theorem 24 of
[15], we see that for all y € Y, e(y) € [0, 1]E and line {e(y)} is an L-ideal. Now
use the above proposition to conclude that Mp =M ,cp {f € X : f(y) =0} is an
M-ideal in X.

REMARK. In the above proposition, whether (3) = (1) or not seems to be still
an open problem. In [17], Roy has proved that (3) = (1) if X is a separable, real,
L'-predual. We next give a simple proof of the complex analogue of Roy’s result
in a somewhat general setting. Lima et al. [14] have also given a simple proof of
Roy’s result.

ProposITION 3.6. Let X be a Banach space such that

(1) A ={f €E,; line {f} is an L-ideal} is sequentially w*-dense in Z,

(2) the intersection of any countable family of M-ideals in X is an M-ideal.
Then for any f € Z, line {f} is an L-ideal.

Proor. Let f € E — A and choose a sequence {f,} in A such that the f,’s are
T-independent, i.e., f.# t - f for any t € T and n, m and f, > f. (This can be
done since A is a T-invariant set and f#0, only for finitely many n’s,
fa € T -{f:}:-: and redefining the sequence by discarding those finite n’s).

Let N =Fné{f,‘}°,.°=1 (closure in the norm topology). Since the f,’s are T-
independent and line{f,} is an L-ideal for all n, we have

N={2aiﬁ12‘aii<w} and zaiﬁ =2|a,«i.

Let F=c{f.}n-1. Since E(F)={f.}a-1U{f}, it is easy to see that line F =
N +line{f}. Since N is norm closed, line F is norm closed and hence is
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w*-closed. Also line F = (1, Kerf,)* (Ker stands for the Kernel). Therefore
line F is a w*-closed L -ideal.

Since f is an extreme point T-independent of {f.}.-, we get that f& N and
IAf +Z Afi = A |+ Z7-1 1A |. Therefore line{f} is an L-ideal in line F and
hence in X™*.

Now let 0# f€ Z —E.

Case (i): Assume that X% is a standard compact convex set. If f/||f|Z E,
choose a maximal measure v with y(v)= f/||f|| and p,,p.€Suppv NE, p1, p:
independent. We choose a sequence {f.} in E — T{p,, p.} such that the f,’s are
T-independent and f, w—.>f.

As before let N ={Z7_, A:f; : 22 [Ai | <} and F = c{fu}n-1.

If E(F)={f.}:-, then since f EN we have N =line F. Hence line F is a
w*-closed L-ideal. On approximating v by simple measures having resultant
fIifl, it is easy to see that Supp » C line F. Hence pi, p: € N, contradicting the
choice of the sequence {f.}.

If E(F)={f.}s-1U{f} then line F = N + line{f} and we may assume that
f&N.

As before, line F is a w*-closed L-ideal and p,, p, € line F = N @ line{f}.
Hence p, € N @ line{p.}. Since p, is an extreme point T-independent of {f,}7-;,
this direct sum is a L'-direct sum. Therefore p,€N or p,€ T{p,}, again
contradicting the choice of the sequence {f.} and points p,, p..

Therefore f/||f||€ E and hence line{f} is an L-ideal.

Case (ii): X is arbitrary.

Let {f.} be any T-independent sequence in E with f, 5 fUF=clf.}ro,itis
easy to see that M = line F is a w*-closed L-ideal and a separable dual Banach
space and hence M, is a standard compact convex set.

If D C E(M,) then D C E and D has only countably many T-independent
vectors. Using the hypotheses and Proposition 3.4, we see that the separable
Banach space X/*M satisfies the same hypotheses as the X in case (i). Therefore
fllfle E(M)CE.

Hence line {f} is an L-ideal.

CorOLLARY 3.7. If X is an L'-predual space with the property that E is
w *-sequentially dense in Z and the intersection of any countable family of
M-ideals is an M-ideal, then X is a G-space.

CoroLLARY 3.8. If K is a compact convex set such that
(i) A ={x €E(K):{x} is a split face} is sequentially dense in E(K),
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(ii) the intersection of any family of M-ideals in A (K) is an M-ideal in A (K),
then K is a Bauer simplex.

PROOF. We use the above proposition and the correspondence between
closed split faces of K and w*-closed L -ideals of A (K)* 10 deduce that E(K) is
closed (noting that 1 € A (K)) and {x} is a split face Vx € E(K).

Let ac€A(K), ac#0 and let F={xE€K:alx)=0} Let M=
{a€A(K):a(x)=0 Vx € E(F)}. Since E(F)CE(K) and {x} is a split face
Vx € E(K), we get by hypotheses that M is an M-ideal. Hence M =
{a € A(K):a(G) =0} for some closed split face G of K.

WEM = al(G)=0=> GCF

If x € E(F)— G then since line e(G) is w*-closed (e is the evaluation map)
and e(x)€Zlinee(G), Ja € A(K)2 a(G)=0 and a(x)#0. This contradiction
shows that G = F. Hence any peak face of K is a split face. From [7], it follows
that K is a simplex. Hence K is a Bauer simplex.

ReMaRk. The set K considered in proposition I1.3.17 of [1] provides an
example of a non-metrizable compact convex set K for which E(K) is
sequentially dense in E(K). Corollary 3.8 improves a result of A. Gleit [10].

4. Other classes of L'-preduals

THEOREM 4.1.  For a complex Banach space X, the following are equivalent.

(1) X is a C,-space.

(2) (1) A ={f € E :line{f} is an L-ideal} is w *-dense in Z, (ii) for any L-ideal
N CX* Nis an L-ideal and (N), = (N)).

(3) Any relatively w*-closed, T-invariant subset of E is structurally closed.

(4) For all x€ X, |x|; E—R is lower semi-continuous in the structure
topology.

ProoF. (1) = (2): Since Vf € E, line {f} is an L-ideal, (i) is clear. Let N C X™*
be any L-ideal and let D = U, enns- Supp u,, where g, is the unique maximal
measure with y(u,) = p.

Let p € N N S$*. On approximating w, by simple measures having resultant p,
it is easy to see that Supp u, C(N,). Hence (N) = c(TD).

Since X is a C,-space, TD is a dilated set. Therefore by Corollary 1.3 and
Lemma 1.1, we get that N' = line ¢(TD) is a w*-closed L -ideal and (N), = (Ny).

(2)> (3): Let fEE, {f;} be a net in A and f,»i;f. Let D, ={f.}i=; and

N, = line D; (closure in the norm topology). Since line {f} is an L-ideal Vi, we get
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that N, is an L-ideal. Therefore N; is an L-ideal and (N;), = ((N;),). Let
p € N;NS*, {p.} C (line D;), and p, — p in norm. It is easy to see that p,’s are in
the convex hull of TD;. Therefore p € ¢(TD,) and hence (N;),=c(TD;)=
((N;)y).

Now let N=0);N,. Then N is a w*-closed L-ideal and line{f}C N. If
g ENNS* then g €(N;), Vj so that g € MN;c(TD;). Now if g€ line{f}, then
0#xEXDg(x)#0and f(xg)=0.Forany e >03j.3j=], > |fi(xo)|<e.
Therefore for any h € c(TD,)), |h(xo)| = &. In particular |g(xo)|Se. As € is
arbitrary, we get a contradiction. Hence N = line{f} and consequently line{f} is
an L-ideal.

For any D C E, relatively w*-closed and T-invariant, let N = line D (closure
in norm topology). By what we have seen above, N is an L-ideal. Hence by
hypotheses we get that N is an L-ideal and D=DNE =c(D)NE =
(N)N E =(N),N E. Therefore D is a structurally closed set.

(3) > (4) This is easy to see.

@) > (1): Let0#%fEZ~E and let {f} be anetinE, f,>f FixpEN,NE
and let 0# x € X, ¢ >0 and |p(x)|>c, Then {g €E :|g(x)|> c} is a structur-
ally open set containing p. Since f,— p, we get that |f(x)| = c. Now as in the
proof of Theorem 3.1, we get that line{f} is an L-ideal.

Using arguments similar to the ones used in the proof of Theorem 3.1, we can
see that X is a G-space and as a consequence |x| is u.s.c. in the structure
topology. Therefore |x | is continuous in the structure topology for all x.

Finally if 0% f€ Z ~E and {f;} is a net in E such that f,~>f and f,>p,
p € N; N E then by the structural continuity of |x |, we get that |f(x)| ={p(x)|
for all x. '

Therefore f € E and hence zero is the only w*-accumulation point of E.

Hence X is a C,-space.

We now state three corollaries. We omit the easy proofs.

CoROLLARY 4.2. If X is a G-space then for any L-ideal N, N is an L-ideal.
Moreover (N), = (N,) for all L-ideals N if and only if X is a C,-space.

CoroLLARY 4.3. Let K be a compact convex set. The following are equivalent.

(1) K is a Bauer simplex.

(2) () A ={x € E(K):{x} is split} is dense in E(K), (ii) for any split face F, F
is a split face.

(3) For all a € A(K), |a|: E(K)— R is lower semi-continuous in the facial
topology.
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RemaRrk. Corollary 4.3 improves a result of A. Lima in [12].
CoROLLARY 4.4. A C,-space X is Cs iff E is compact in the structure topology.

ExaMPLE 4.5. We now give an example of a separable G-space X and an
L-ideal N in X such that for no A >0, (N), C A(N)). This therefore furnishes a
simple example of a subspace of characteristic zero in the sense of Dixmier [3].

Let X ={f € Ce[0,1]: f(1/n)=m'f(1—1/n) for n =3 and f(0)=0=f(1)=
fG)} then X is a G-space.

Let Q :[0,1]— X7 denote the evaluation map. Now it is not difficult to see
that E = +{Q(x):x €[0,1], x# 1/n, n = 2}. Choose a sequence {x.} in (0,3)
such that {x.};_; N{1/i}i=; is empty for all i =3 and x,— 1/i for all i Z3.

Let D= U _,{Q(xi)};-.. Then D CE and D = D U{1/i}{-; U {0}. So if we
let N =line D™™, then N is an L-ideal and (N,) = c(% D).

Let B==+DU{Q(-1/i)~. Since Q(—1/i)~>0 and Q(l/i)=
i'Q —1/i), i =3, we get that B is a dilated set. Therefore linec(B) is a
w*-closed L-ideal and (N), = (line ¢ (B)), = ¢(B).

Suppose 3 an integer mo>1 and ¢(B)C moc(£ D). Then {Q(1—1/i)}izsC
moc(= D).

Fix i 23, get f € X, 0= f = 1 such that f(1— /i) =1, f(1/i) = 1/i and f peaks
at 1/i in (0,3).

Now there exists a probability x on D U — D such that

1 (1-1/i) 1
mo © Mo : U)=j5u~5fdﬂ =i

and this is true for any i 3. A contradiction.
Hence for no A >1, (N), C A(N)).

THEOREM 4.6. Let X be a complex Banach space such that any T-invariant
set D C E is structurally closed, then X is isometric to co(I") (space of continuous
functions vanishing at infinity on a discrete set T', with the supremum norm).

Proor. Use Theorem 4.3, to conclude that X is a C,-space. Let F be a
maximal face of X% and let ' = FNE. Then E = TT (see [15]).
Define @ : X — ¢o(I') by

D)) =f(x) VxexX, fer.

Then @ is well defined (see proposition 4.8 of [5]), and an isometry.
To see that ® is onto, let T € ¢y(I') and define I': EU{0}—>C by J'(p)=
t7(q)if pEE andp =tq,q €EF, t € T and J'(0)=0. Now it is not hard to see
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that 7' is well defined and is a w*-continuous, T-homogeneous function on
E U{0}. Extend J', by Tietz’s theorem, to a w*-continuous function g on X%
and let h =hom g.
Now by theorem 9 of [15], 3» € X such that f(»)= h(f) Vf € X7 and since h
agrees with ' on E, we get that f(v)=J'(f) Vf € EU{0} and ®(v)=J.
This completes the proof.
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