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CHARACTERIZATIONS OF SOME CLASSES 
OF L 1-PREDUALS BY THE 

ALFSEN-EFFROS STRUCTURE TOPOLOGY 

BY 

T. S. S. R. K. RAO 

ABSTRACT 

Using the Alfsen-Effros structure topology on the extreme boundary of the 
dual unit ball of a complex Banach space, we give characterizations of 
L~-preduals (i.e., Banach spaces whose duals are isometrically isomorphic to 
L ~(/x) for a non-negative measure/~)  and some of its subclasses viz. G-spaces, 
C~-spaces and co(F) spaces. 

Introduction 

A closed subspace J of a complex Banach space X is called an L-ideal if there 

is a projection P from X onto J such that {Ix II = II Px II+ IIx - Px II for all x in X. 

A closed subspace M C X is called an M-ideal if M ± = {f E X* : f (M) = 0} is an 

L-ideal in X*. Let E denote the extreme points of the closed unit ball of X*. A 

set D C E is said to be structurally closed if there exists a w*-closed L-ideal N 

such that N N E = D. The sets D form the closed sets of a topology on E called 

the structure topology. The structure topology was introduced by Alfsen and 

Ettros in [2]. We make use of properties of the structure topology and related 

results of M-ideal theory from [2] without explicitly mentioning them. 

In this paper we study L~-preduals (i.e., Banach spaces X such that X * =  

L l(g), for some non-negative measure g )  and some subclasses of L l-preduals 

using the structure topology. Most of our results directly depend on the results 

obtained in [8]. 

In Section 1, we develop the complex analogues of some of the results in [5]. 

Details of proofs are given only in those instances when they differ significantly 

from those in [5]. In Section 2, we characterize real, L l-preduals as those Banach 
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spaces X for which {f E E : I /(x)l  = 1} is a structurally closed set for each x E X. 

We then formulate and prove the corresponding result for complex Banach 

spaces. 

For the definitions of G-spaces, C~, C~ spaces, see [15]. We freely use the 

characterizations of these spaces obtained in that paper. In Section 3 we 

characterize complex G-spaces as those Banach spaces X for which Ix I : E ~ R, 

defined by Ix ](f) = If(x)l, is structurally upper semi-continuous for each x C X. 

We attempt to solve a problem of Uttersrud [18], of characterizing G-spaces as 

those Banach spaces X for which the intersection of M-ideals is an M-ideal and 

line {/} is an L-ideal for all f ~ E. We show that if {f E E : line {f} is an L-ideal} 

is w*-sequentially dense in the w*-closure of E, then line {f} is an L-ideal for all f 

in the w*-closure of E. This enables us to give simple and transparent proofs of 

results which are more general than those obtained by N. Roy [17] and A. Gleit 

in [10], in this context. 

C,-spaces are characterized in Section 4 as those Banach spaces X for which 

the structure topology agrees with the relative w*-topology on T-invariant 

subsets of E. 

We make free use of concepts of convexity theory from [1]. 

NOTATIONS. For a complex Banach space X, let X1 denote the closed unit 

ball, S = {x E X l :  IIX II : 1} and S* = {f @ X * :  II)cjJ = 1}. Let Z denote the w*- 

closure of E. For any A C X*, let c(A) denote the w*-closed, convex hull of A. 

Let C denote the complex plane and T the unit circle in C. 

For a compact convex set K (always considered in a locally convex Hausdorff 

topological vector space) let E(K) denote the extreme boundary of K. 

For a probability measure ~ on K, let y(/z)  denote the resultant of /x. Let 

A (K)(Ac(K)) denote the space of real-valued (complex-valued) affine continu- 

ous functions on K, equipped with the supremum norm. 

For a compact Hausdorff space Y let Cc(Y) denote the space of complex- 

valued continuous functions on Y. For a probability measure/z  on Y, let Supp 

denote the topological support of ~. For any y @ Y, let 6 (y) denote the Dirac 

measure at y. 

For p @ X*,  let Np denote the smallest w*-closed L-ideal containing p. All 
w *  s 

closures, unless otherwise mentioned, are taken in the w*-topology. Let ---~, 

denote convergence in the w* and structure topologies respectively. For  all other  

unexplained notations and terminology, see [2], [5], [8] and [15]. 

We will be using several times the following result from general Banach space 

theory (see [4], V. 5.9). 
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Let X be a Banach space and K C X* be a w*-closed convex set. Then line K 

(i.e., the linear span of K)  is norm closed iff it is w*-closed. 

1. T-faces and T-dilated sets 

DEFINITION. Let  X be a complex Banach space. For any p, q E X, write p < q 

if ]]q 11 = ]]q - p  ]] + lip ]]. 
The operation < was introduced in [2] and is a partial ordering on X. 

A set H C X is said to be hereditary if p E H, q < p implies q E H. 

DEFINITION. A w*-closed, T-invariant convex set H C X* is called a T-face if 

(1) Vp ~. 14, p #  O, P/]IP ]] E H ;  (2) H is hereditary. 

Let  Hp denote the smallest w*-closed T-face containing p. 

REMARK 1. If p E E  then H p = { A p : ] A [ < I } .  For any 0 # p ~ X * ,  

E ( H p ) C E  and Hp=HAp f o r 0 < A < l .  

DEFINITION. We say that a w*-closed set D C X* is T-dilated if for all p E D, 

E(He)C D. 

For the rest of this section we assume that X is an L l-predual and K = X*.  

DEFINITION. Following the notation of [8], for any p E K ,  define tap-- 

R(hom/x) ,  where/.t is a maximal measure with y(p.) = p. Then by [6], tap is well 

defined and ),(tap)= p. 

REMARK 2. It is clear from the results in section 5 of [5] that for 0 # p E K, 

= lip II" top~lip II and if lip II = 1 then to e = /z  and Supp to e C H e. Also a w*- 
closed, T-invariant set H is a T-face iff Vp E H, p # 0, Supp tap C H. 

LEMMA 1.1. For any T-face H of K, N = line H is a w*-closed L-ideal. 

PROOF. We first claim that N1 = H and N is w*-closed. 

Let  0 # p ~ N1, then p = XT=~ r,q,, q, ~ H, r, # 0 Vi. So p = A X~=I A,t,q, where 

A = X~Lt It, I, A, = ]ri I/A and t, = r~[] r, ] Vi. Since q = Y.~=~ Mt, q, ~ H, q/llq ]] E H 

and hence p =xllqllq/llqll is in I-I. The re fo re  H=N  and hence by the 

Krein-Smulian theorem, we get that N is w*-closed. 

That  N is an L-ideal follows by an argument similar to the one used in the 

proof of the latter half of proposition 2.1 in [8]. 

LEMMA 1.2. c(D)  is a T-face for any w*-closed, T-invariant set D C K with 

the property that Vp E D, Supp tap C c(D ). 
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PROOF. Let  O~ p E c (D)  and let /x be a probabili ty measure on D with 

y(/x) = p  and let v be a maximal measure on K dominat ing/~ in the Choquet  

ordering. Then by theorem 2.1 of [5], 3 nets of measures {~j} and {vi} such that 
w* w* n i - -  ni i J c i = l  Vj, i, tzi--~Iz, v j ' - ~ ' ,  tz i =~,,=~cig(p~), ~'j - ~ , = z c , A ,  for all j, where O_ -< J< 

~ c~ = 1 Vj  and p {E  D Vi and j, A~ is a maximal measure with ~/(A~) = p{ Vj  

and i. 
By hypothesis, Supptop~Cc(D),  i.e., S u p p R ( h o m A i ) C c ( D ) a n d  hence 

hom A~ has its support  in c(D),  as hom(R (hom A~)) = hom(hom A~) = horn A~. So 

horn ~,j has its support  in c(D).  Since 'horn'  is a w*-continuous map, we get that 

horn ~, has its support  in c(D).  Therefore,  Supp top = Supp R (hom v ) C  c(D).  

Now the proof is complete in view of Remark  2. 

COROLLARY 1.3. For any dilated set D, c (D)  is a T-face and D O E is a 

structurally closed set. 

2. L~-preduals 

PROPOSITION 2.1. Let X be a complex Banach space and an L l-predual. If 

x E S, then {f E E : If(x)I  = 1} is a structurally closed set. 

PROOF. Let D = {f ~ Z : I f (x) l  = 1}. 

Let  p E D A S * ,  then top=/x  and since {f E X * : f ( x ) =  l} is a w*-closed 

face, it is easy to see that Supp/z C c(D).  Now it follows from the results of 

the previous section that N = l i n e c ( D )  is a w*-closed L-ideal  and N N E  = 

{f E : I f (x ) l  = 1}. 

REMARk:. The above proposition was proved in [5], when X is a real 

LLpredual .  However ,  the proof given there contains an error. 

THEOREM 2.2. Let X be a real Banach space such that for all x E S, 

{f C E : I f (x) l  = 1} is a structurally closed set, then X is an L Lpredual. 

PROOF. We use arguments similar to the ones used in proving theorem 3.3 of 

[8]. 

Let  Xo {E S and let F = {f @ X* : f(Xo) = 1}. Since {f E E : Jf(xo)l = 1} = N N E, 

for some w*-closed L-ideal  N, it is easy to see that N = line F and N1 = 

c (F U - F). 

We claim that line F is an L-space.  

Let J = l(line F )  = {x E X : f ( x )  = 0 Vf E F} and define {I} : X I J ~ A (F) by 

dp(x + J ) ( f ) = f ( x ) ,  f E F, x E X. Since {I}(xo+J)= 1 (the constant function) 
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using a standard argument in convexity theory it is easy to see that dp is an onto 

isometry. 

Let a E A ( F ) ,  I l a l f = l  and let G = { f E F : a ( f ) = l } .  Since dO is onto 

3x, E X ~ l l x ~ + J J l = l  and ~ ( x , + J ) = a .  Since J is an M-ideal 

3x2 ~ J ~ IIx, + xJI = IIx, + Jll = 1. N o w  if a = {f E X* : ½f (xo + x, + x2) = 1} then 

it is easy to see that line G is a w*-closed L-ideal in line F and consequently G is 

a split face of F. From [7], it then follows that F is a simplex and hence line F is 

an L-space. 

Let f,, E E and let 0 < e < 1. Using the Bishop-Phelps theorem get go ~ X* 

such that lifo- goll =< e and Ilgoll = go(y), y E S. By what we have seen above, if 

G = {f E X * ' f ( y ) =  1} then line G is a w*-closed L-ideal and go E line G. If P 

denotes the L-project ion from X* onto line G, then since II(I- P)(fo-go)l/< 
and P(fo) = 0 or fo, we get that P(fo) = fo. Therefore fo E line G and hence is an 

extreme point of the unit ball of the dual L-space line G. Hence by theorem 5.8 

of [13], line {fo} is an L-ideal in line G and consequently in X*. 

If f,, E S* and P([o) = 0 or fo for all L-projections P, then we get go and G as 

above and observe that go E line G and apply theorem 5.8 of [13] to conclude 

that fo E E. 

Applying theorem 5.8 of [13] once again we get that X is an Ll-predual.  

REMARK. The hypotheses of the above theorem is equivalent to saying that 

line Fx is an L-ideal and ( l i n e G ) ~ = c ( F x U - F x )  V x E S ,  where Fx = 

{f E X* : f ( x )  = 1}. 

An example was mentioned in section 4 of [8] to the effect that the above 

result is not true when X is a complex Banach space. We give below a partial 

complex analogue. First we recall the definition of an M-set  from [8]. 

DEFINn'ION. Let X C Cc(Y) be a closed subspace separating points of Y. A 

closed set D C Y, of the form D = e-I(TF), where F is a w*-closed face of X* 

and e : Y ~ X *  is the evaluation map, is called an M-set if for any boundary 

measure tt on Y (i.e., ]/~ ]o e -~ is a maximsl measure on X*)  and /z  E A ~, we 

have /~ ] D E A  l 

Tr~EOREM 2.3. Let X C Cc(Y) be a closed subspace, separating points of Y. 

The following are equivalent. 
(1) For all foES,  { a E E : l a ( [ o ) l = l }  is structurally closed and if F =  

{a E X* : a(fo) = 1} then F is split in c(F U - iF). 

(2) For all foES,  D = { y E Y : l f o ( y ) l = l }  is an M-set and if B =  
{fog : g E X} then B I D is a closed self -adjoint subspace of Cc(D)  (fo stands for 

the complex conjugate of fo). 
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(3) X is an L '-predual. 

PROOF. We shall prove that (3) ::), (2) f f  (1) =), (3). 

(3) ~ (2): We freely use the notations introduced in the proof of theorem 3.3 

of [8]. 
Let F = {a ~ X* : a(fo)= 1}. Since D = e-I(TF), it follows from the proof of 

(1) ~ (2) of theorem 3.3 in [8] that D is an M-set. 

It follows from the results in section 4 of [15] that the map • : X I J---> Ac(F),  

defined in the canonical way (J = ~(line F)), is an onto isometry. Let [, g E X 

be such that q b ( f + J ) = ~ b ( g + J ) .  For any y E D ,  if e (y )= t~- ,  J E F  and 

t E T  then we have f o ( y ) = t  and / o ( y ) g ( y ) = q b ( g + J ) ( 3 ) = q b ( f + J ) ( ~ - ) =  

f0(y)/(y).  There fog is the conjugate of fo[ on D. Hence B [D is self-adjoint. 

It is trivial to verify that B [ D  is isometrically isomorphic to X I J and hence 

B [ D  is closed. 

(2) ~ (1): If we define O :X*-->X* by O ( p ) ( f ) = f D f d t z  for f EX,  p E X *  

and/z  a boundary measure on Y representing p with ttP II = I1~ It, then the same 

reasoning as in the proof of theorem 3.3 of [8] yields that line F is a w*-closed 

L-ideal and ( l i neF) l=c (TD) .  Therefore {a E E :[a(fo)] = 1} is structurally 

closed. Using the self-adjointness of B I D ,  it is easy to see that 

Ov:XIJ---,Ac(F ) has self-adjoint range, where alp, F and J are defined as 

before. Since the range of • contains the constant function 1, it must coincide 

with Ac(F).  Hence F is split in c ( F U  - i F )  (see [11], chapter 7, lemma 12). 

(1) ~ (3): Let [o E S, F = {a ~ X* : a (fo) = 1}. Using the hypotheses it is easy 

to see that line F is a w*-closed L-ideal and (line F)I = c (TF). Hence the natural 

map dp:XjJ- -> Ac(F)  (where J = ~(lineF)) is an isometry and the range of qb 

contains the constant function 1. We claim that qb is onto. It is enough to show 

that the range to qb is a self-adjoint subspace of Ac(F).  But this again follows 

from lemma 12, chapter 7 of [11], since F is split in c(F U - iF). Hence as in the 

proof of Theorem 2.1, we get that line F is a dual L-space. Now an argument 

similar to the one given in the latter half of the proof of Theorem 2,1 completes 

the proof. 

3. G-spaces 

THEOREM 3.1. Let X be a complex Banach space. Then X is a G-space iff 

Vx E X, Ix t: E ---~ R, defined by Ix I(f) = If(x )l V f  E E, is upper semi-continuous 
(u.s.c.) in the structure topology. 

PROOF. Suppose Ix [ is structurally u.s.c. Vx @ X. Let 0 ~ [o E Z - E and let 
w* 

{,6} be any net in E and ~ ---~[0. 
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Fix po ~ Nfo N E and let 0 # x E X, c > 0 and I po(x)[ < c. Then by hypothesis 

E E : [f(x)l < c} is a structurally open set containing po. Since by lemma 3.8 of 

[2, part II], ~--%po, there is a ]o such that j>=jo implies J~(x)J<c .  As 

[j(x)--->f(x), it follows that Jf(x)l-<_ c. Hence line{po} = line{fo} and this is true 

for all po E N~o ¢q E. Therefore Nro = line{fo} and hence line{fo} is an L-ideal. 

Now let D C E be any w*-compact, T-invariant set. Let ~ }  be any net in D 

and fj --% f, f E E. By replacing ~ }  by a subnet if necessary, we may assume that 
w* 

fi -"> go and go ~ D. Using an argument similar to the one above we can see that 

Igo(x)l <-Ifo(X)l Vx ~ X. Since Ilfoll-- 1 = )}gol}, we get that [o = ago, a ~ T. Since 
D is T-invariant, fo E D. Hence D is structurally closed. 

Since Vf E Z, line {f} is an L-ideal, we have Z C [0, 1]E. Hence S* ¢q Z = E. 

Since S* is a G, in the relative w*-topology of XT, we get that E is a Borel set. 

Also for any maximal measure /z on X*, / z ( S * ) = l  and /~ (Z)=  1 imply 

~ ( E ) =  1. Hence X* is a 'standard' compact convex set. 

It now follows from the proof of theorem 2.2 in [8] that X is an L'-predual.  

Therefore X is a G-space. 

If X is a G-space, then it is not difficult to see that Ix J is u.s.c, in the structure 

topology (see [16]). 

COROLLARY 3.2. I f  X is a complex Banach space and the structure topology on 
E is such that for any pl, p2 E E, pl, p2 linearly independent, there exist disjoint 
structurally open sets separating pt and p2, then X is a G-space. 

PROOF. Let 0 # x E X and c > 0, let D = {f E E : If(x)l => c}. If ~ }  is any net 

in D and A _L>/, f ~ E, we may assume that ~ -% g, g E Z. Since I//(x)l => c Vj, we 
have g #  0. Hence by lemma 3.8 of [2, part II] and the separation property 

assumed in the hypothesis it follows that f =  tg/llgll, t ~  T. Hence 

[f(x )[ : j~g jj Jg(x )[ >- c. 

Therefore [ E D. 

Hence Ix I is u.s.c, in the structure topology. 

REMARK. Corollary 3.2 was proved for real Banach spaces in [18] by a 

different argument. 

COROLLARY 3.3. A compact convex set K is a Bauer simplex if and only if for 
all a ~ A ( K ) ,  lal: E(K)--->R is u.s.c, in the facial topology. 

PROPOSITION 3.4. Let X be a complex Banach space. Consider the following 

statements. 
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(1) X is a G-space. 

(2) Vx ~ X, x ~ 0 Ux = {f E E : f ( x )  ~ 0} is open in the structure topology. 

(3) Vf E E, line{f} is an L-ideal  and the intersection of any family of M-ideals 

in X is an M-ideal. 

(4) For any D C E, line D is an L-ideal. 

Then we have (1) :::), (2) ¢:> (3) ¢¢, (4). 

PROOF. Follows easily from lemma 5 of [16] and remark 2 after the proof of 

theorem 10 of [18]. 

COROLLARY 3.5. Let X = { f E C c ( Y ) : f ( y ~ ) = A a t a f ( z ~ ) ;  ta ~ T, A, E[0,1]  

and Ya, Za E Y, a E "2} (where "2 is an index set). Then for any D C Y, 

Mo = {f E X : f ( D )  = 0} is an M-ideal  in X. 

PROOF. Let e : Y---~X* denote the evaluation map. Using theorem 24 of 

[15], we see that for all y E Y, e(y)  ~ [0, 1]E and line {e(y)} is an L-ideal. Now 

use the above proposition to conclude that Mo = NyEo {f @ X : f ( y ) =  0} is an 

M-ideal in X. 

REMARK. In the above proposition, whether (3) © (1) or not seems to be still 

an open problem. In [17], Roy has proved that (3) f f  (1) if X is a separable, real, 

L 1-predual. We next give a simple proof of the complex analogue of Roy's result 

in a somewhat general setting. Lima et al. [14] have also given a simple proof of 

Roy's result. 

PROPOSmON 3.6. Let X be a Banach space such that 

(1) A = {f E E ;  line {f} is an L-ideal} is sequentially w*-dense in Z, 

(2) the intersection of any countable family of M-ideals in X is an M-ideal. 

Then for any f ~ Z, line {f} is an L-ideal. 

PROOF. Let f E E - A and choose a sequence {f, } in A such that the f , ' s  are 
w* 

T-independent, i.e., f, ~ t .  f,, for any t E T and n, m and f. ~ L (This can be 
done since A is a T-invariant set and f ~ 0 ,  only for finitely many n's, 

f,  E T .  {f~}.=l and redefining the sequence by discarding those finite n's). 

Let N = line{fn}7=l (closure in the norm topology). Since the f . ' s  are T- 

independent and line{f,} is an L-ideal for all n, we have 

N={ '~ '~  a,fi : ~ , a , , < ~ } , = l  i = 1  and I ~ a , ~ l = ~ [ a , , . =  = 

Let F =  c{f.}~=~. Since E(F)={f ,}~=~U{f},  it is easy to see that l i n e F =  
N + line{]'}. Since N is norm closed, line F is norm closed and hence is 
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w*-closed. Also line F = ( O ,  Ke r r , )  l (Ker stands for the Kernel). Therefore  

line F is a w*-closed L-ideal. 

Since f is an extreme point T-independent  of {f,}~=~ we get that f ~  N and 

IIV ÷ A,f, LI = I AI+ !A, I. Therefore line{f} is an L-ideal in line F and 

hence in X*. 

Now let O ~ f E Z - E .  

Case (i): Assume that X* is a standard compact convex set. If f/llfll  E, 
choose a maximal measure u with y ( u ) =  f/ilfll and pl,p2 E Supp u N E, p~, p2 

independent.  We choose a sequence {f,} in E - T{pl,p2} such that the f , ' s  are 

T-independent  and f , - ~  f. 

As before let N = {ET=~ A,~ :E~=~ [3,, 1< ~} and F = c{f,}~=~. 

If E(F)={f,}~=s then since f E N  we have N = l i n e F .  Hence l ineF  is a 

w*-closed L-ideal. On approximating v by simple measures having resultant 

f/llftl, it is easy to see that Supp ~, C line F. Hence p,,pz E N, contradicting the 

choice of the sequence {f.}. 

If E(F)={f ,}7=~U{f} then l i n e F = N + l i n e { f }  and we may assume that 

f ~ N .  
As before, line F is a w*-closed L-ideal and p~, p2 E line F = N ~ line{f}. 

Hence p2 ~ N @ line{p1}. Since pl is an extreme point T-independent  of {f,}7=~, 

this direct sum is a LLdirect  sum. Therefore  p 2 E N  or p2GT{p~}, again 

contradicting the choice of the sequence {f,} and points p~, p:. 

Therefore  f/llfll ~ E and hence line{f} is an L-ideal. 

Case (ii): X is arbitrary. 
w* 

Let  {f,} be any T-independent  sequence in E with f,  f. If F c{f,}~=~, it is 
easy to see that M = line F is a w*-ctosed L-ideal and a separable dual Banach 

space and hence M, is a standard compact convex set. 

If D C E(M~) then D C E and D has only countably many T-independent  

vectors. Using the hypotheses and Proposition 3.4, we see that the separable 

Banach space X/±M satisfies the same hypotheses as the X in case (i). Therefore 

f / l l f [ I  E E(M,) C E. 
Hence line {f} is an L-ideal. 

COROLLARY 3.7. If  X is an L Lpredual space with the property that E is 

w*-sequentially dense in Z and the intersection of any countable family of 

M-ideals is an M-ideal, then X is a G-space. 

COROLLARY 3.8. If  K is a compact convex set such that 
(i) A = {x E E(K):  {x} is a split face} is sequentially dense in E(K),  
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(ii) the intersection of any family of M-ideals in A (K) is an M-ideal in A (K), 
then K is a Bauer simplex. 

PROOF. We use the above proposition and the correspondence between 

closed split faces of K and w*-closed L-ideals of A (K)* to deduce that E(K)  is 

closed (noting that 1 E A(K))  and {x} is a split face Vx E E(K).  
Let a o E A ( K )  ÷, ao~O and let F = { x E K : a o ( x ) = O } .  Let M =  

{a E A ( K ) : a ( x ) = O  Vx EE(F)} .  Since E ( F ) C E ( K )  and {x} is a split face 

Vx ~ E ( K ) ,  we get by hypotheses that M is an M-ideal. Hence M = 

{a C A ( K ) :  a(G)= 0} for some closed split face G of K. 

a o ~ M  ~ a o ( G ) = 0 ~  G C F  
If x E E ( F ) -  G then since line e(G) is w*-closed (e is the evaluation map) 

and e(x)f{_ line e(G), Ba ~ A ( K )  ~ a(G) = 0 and a(x) ~ O. This contradiction 

shows that G = F. Hence any peak face of K is a split face. From [7], it follows 

that K is a simplex. Hence K is a Bauer simplex. 

REMARK. The set K considered in proposition II.3.17 of [1] provides an 

example of a non-metrizable compact convex set K for which E(K)  is 

sequentially dense in E(K). Corollary 3.8 improves a result of A. Gleit [10]. 

4. Other classes of L ]-preduals 

THEOREM 4.1. For a complex Banach space X, the following are equivalent. 

(1) X is a C~-space. 
(2) (i) A = {f ~ E : line{f} is an L-ideal} is w *-dense in Z, (ii) for any L-ideal 

N C X*, IQ is an L-ideal and (IV)1 = (NI). 
(3) Any relatively w*-closed, T-invariant subset of E is structurally closed. 
(4) For all x E X, J x[;  E-->R is lower semi-continuous in the structure 

topology. 

PROOF. (1) ~ (2): Since Vf E E, line {f} is an L-ideal, (i) is clear. Let N C X* 

be any L-ideal and let D = U p ~ n s .  Supp/.~p, where/~p is the unique maximal 

measure with y(/~p)= p. 
Let p E N n S*. On approximating/~p by simple measures having resultant p, 

it is easy to see that Supp/xp C(N1). Hence (N~)= c(TD). 
Since X is a C~-space, T/9 is a dilated set. Therefore by Corollary 1.3 and 

Lemma 1.1, we get that ~r = Dine c (TD) is a w*-closed L-ideal and (]Q)I = (NO. 

( 2 ) ~  (3): Let f ~ E ,  ~ }  be a net in A and f~-~f. Let Dj ={fi},__-~ and 

Nj = line Dr (closure in the norm topology). Since line ~ }  is an L-ideal Vi, we get 
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that ~ is an L-ideal. Therefore ~ is an L-ideal and (/Qi)~ = ((N~)~). Let 

p E Nj O S*, {p,} C (line Dj)~ and p, ---> p in norm. It is easy to see that p , ' s  are in 

the convex hull of TDj. Therefore p E c(TDj) and hence (]Qj)I=c(TDj) = 

((Nj)I) .  

Now let N = n i I V i .  Then N is a w*-closed L-ideal and iine{f}CN. If 

g E N n S* then g E (~)~ Vj so that g ~ Njc(TDj).  Now if g ~  line{/}, then 

30 ~ Xo E X ~ g(xo) ~ 0 and/(Xo) = 0. For any e > 0 3j~ ~ j => ]~ f f  lfJ (Xo)l < e. 

Therefore for any h E c(TDj~), l h ( x o ) l -  < _ e. I n  particular I g ( x o ) l ~  e. A s  e is 

arbitrary, we get a contradiction. Hence N = line{f} and consequently line{f} is 

an L-ideal. 
For any D C E, relatively w*-closed and T-invariant, let N = line D (closure 

in norm topology). By what we have seen above, N is an L-ideal. Hence by 

hypotheses we get that /V is an L-ideal and D =£3 N E = c ( D ) A E  = 

(N 0 n E = (/Q)~ n E. Therefore D is a structurally closed set. 

(3) ::> (4) This is easy to see. 
w* 

(4) ::> (1): Let 0 fi f E Z - E and let ~ }  be a net in E, fj ---> f. Fix p E Nr N E 
and let 0 ~ x  E X ,  c > 0  and ]p(x)[>c, Then {g ~ E  :lg(x)l>c} is a structur- 

ally open set containing p. Since fj-L>p, we get that If(x)l-> c. Now as in the 

proof of Theorem 3.1, we get that line{f} is an L-ideal. 

Using arguments similar to the ones used in the proof of Theorem 3.1, we can 

see that X is a G-space and as a consequence I xl is u.s.c, in the structure 

topology. Therefore I xl is continuous in the structure topology for all x. 

Finally if 0 # f  ~ Z - E  and ~ }  is a net in E such that f j - ~ f  and ]~-~p, 
p E N r G E then by the structural continuity of tx I, we get that [f(x)l = [p(x)l 

for all x. 
Therefore f E E and hence zero is the only w*-accumulation point of E. 

Hence X is a C,-space. 

We now state three corollaries. We omit the easy proofs. 

COROLLARY 4.2. If  X is a G-space then for any L-ideal N, !~I is an L-ideal. 

Moreover (1Q)~ = (N~) for all L-ideals N if and only if X is a C~-space. 

COROLLARY 4.3. Let K be a compact convex set. The following are equivalent. 

(1) K is a Bauer simplex. 
(2) (i) A = {x E E (K): {x } is split} is dense in E ( K), (ii) for any split face F, 

is a split face. 
(3) For all a E A (K), [a I: E(K)--> R is lower semi-continuous in the facial 

topology. 
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REMARK. Corollary 4.3 improves a result of .A. Lima in [12]. 

COROLLARY 4.4. A C~-space X is C~ li fE is compact in the structure topology. 

EXAMPLE 4.5. We now give an example of a separable G-space X and an 

L-ideal N in X such that for no A > 0, (N)1 C A(N0. This therefore furnishes a 

simple example of a subspace of characteristic zero in the sense of Dixmier [3]. 

Let X = {f E CR[0, 1]: f (1 /n )  = r~'f(1 - l /n )  for n _>-- 3 and f(0) = 0 = f(1) = 

f(½)} then X is a G-space. 

Let  O :[0, 1 ] ~  X]' denote the evaluation map. Now it is not difficult to see 

that E = +_{O(x):x  E[0,1] ,  x ~  l/n, n =>2}. Choose a sequence {xl,} in (0, l) 

such that {x~,}7=1 n {1/i}7=3 is empty for all i =  3 and x',---~ 1/i for all i =  > 3. 

Let  D = U ~=3{Q(x~,)}7=~. Then D C E a n d / 5  = D U {1/i}7=3 U {0}. So if we 

let N = l ineD N°'m, then N is an L-ideal and (N1) = c(+-D).  

Let B = _ / g U { Q ( 1 - 1 / i ) } L 3 .  Since Q ( 1 - i / i )  w- 0 and Q(1 / i )=  

i - l Q ( 1 - 1 / i ) ,  i=>3, we get that B is a dilated set: Therefore  l i nec (B)  is a 

w*-closed L-ideal and (N)I = (line c(B))~ = c(B) .  

Suppose 3 an integer too> 1 and c(B)C_ moc(+-D).  Then { Q ( 1 -  1/i)}~__-3 c 

moc ( +- D ). 

Fix i => 3, get f E X, 0 =< f <- 1 such that f(1 - i / i )  = 1, f (1/ i )  = 1/i and f peaks 

at 1/i in (0,½). 

Now there exists a probability /z on /5 U - / 9  such that 

- - =  So 1 1 Q ( 1 - 1 / i ) ( f ) =  Nix<== 
mo mo ~-6 i 

and this is true for any i => 3. A contradiction. 

Hence for no A > 1, (N)l C A(N 0. 

THEOREM 4.6. Let X be a complex Banach space such that any T-invariant 

set D C E is structurally closed, then X is isometric to co(F) (space of continuous 

functions vanishing at infinity on a discrete set F, with the supremum norm). 

PROOF. Use Theorem 4.3, to conclude that X is a C¢-space. Let  F be a 

maximal face of X~* and let F = F n E. Then E = TF  (see [15]). 

Define qb : X ~ c0(F) by 

• (x)ff) =/(x) Vx ~ x ,  f ~ r. 

Then • is well defined (see proposition 4.8 of [5]), and an isometry. 

To see that ~b is onto, let J- E co(F) and define f f ' : E  U {0}---~C by :3"(/9)= 

t~-(q) if p E E and p = tq, q E F, t E T and :3-'(0) = 0. Now it is not hard to see 
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that ~-' is well defined and is a w*-continuous, T-homogeneous  function on 

E U {0}. Extend 0-', by Tietz's theorem, to a w*-continuous function g on X*  

and let h = homg.  

Now by theorem 9 of [15], 3 v  E X such that f(v)  = h(f) Vf E X~ and since h 

agrees with 9-' on E, we get that f(v) = 9-'(f) Vf E E U {0} and qb(v) = 9-. 

This completes the proof. 
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